3.498 \(\int x (c+d x+e x^2+f x^3) \sqrt{a+b x^4} \, dx\)

Optimal. Leaf size=354 \[ \frac{a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (21 \sqrt{b} d-5 \sqrt{a} f\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{105 b^{5/4} \sqrt{a+b x^4}}-\frac{2 a^{5/4} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a+b x^4}}+\frac{1}{4} c x^2 \sqrt{a+b x^4}+\frac{a c \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 \sqrt{b}}+\frac{1}{35} x^3 \sqrt{a+b x^4} \left (7 d+5 f x^2\right )+\frac{2 a d x \sqrt{a+b x^4}}{5 \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}+\frac{2 a f x \sqrt{a+b x^4}}{21 b} \]

[Out]

(2*a*f*x*Sqrt[a + b*x^4])/(21*b) + (c*x^2*Sqrt[a + b*x^4])/4 + (2*a*d*x*Sqrt[a + b*x^4])/(5*Sqrt[b]*(Sqrt[a] +
 Sqrt[b]*x^2)) + (x^3*(7*d + 5*f*x^2)*Sqrt[a + b*x^4])/35 + (e*(a + b*x^4)^(3/2))/(6*b) + (a*c*ArcTanh[(Sqrt[b
]*x^2)/Sqrt[a + b*x^4]])/(4*Sqrt[b]) - (2*a^(5/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b
]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[a + b*x^4]) + (a^(5/4)*(21*Sqrt[b]*d
- 5*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)
*x)/a^(1/4)], 1/2])/(105*b^(5/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.273206, antiderivative size = 354, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 11, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.393, Rules used = {1833, 1248, 641, 195, 217, 206, 1274, 1280, 1198, 220, 1196} \[ \frac{a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (21 \sqrt{b} d-5 \sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 b^{5/4} \sqrt{a+b x^4}}-\frac{2 a^{5/4} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a+b x^4}}+\frac{1}{4} c x^2 \sqrt{a+b x^4}+\frac{a c \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 \sqrt{b}}+\frac{1}{35} x^3 \sqrt{a+b x^4} \left (7 d+5 f x^2\right )+\frac{2 a d x \sqrt{a+b x^4}}{5 \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}+\frac{2 a f x \sqrt{a+b x^4}}{21 b} \]

Antiderivative was successfully verified.

[In]

Int[x*(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(2*a*f*x*Sqrt[a + b*x^4])/(21*b) + (c*x^2*Sqrt[a + b*x^4])/4 + (2*a*d*x*Sqrt[a + b*x^4])/(5*Sqrt[b]*(Sqrt[a] +
 Sqrt[b]*x^2)) + (x^3*(7*d + 5*f*x^2)*Sqrt[a + b*x^4])/35 + (e*(a + b*x^4)^(3/2))/(6*b) + (a*c*ArcTanh[(Sqrt[b
]*x^2)/Sqrt[a + b*x^4]])/(4*Sqrt[b]) - (2*a^(5/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b
]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[a + b*x^4]) + (a^(5/4)*(21*Sqrt[b]*d
- 5*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)
*x)/a^(1/4)], 1/2])/(105*b^(5/4)*Sqrt[a + b*x^4])

Rule 1833

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)*Sum[Coeff[Pq, x, j + (k*n)/2]*x^((k*n)/2), {k, 0, (2*(q - j))/n + 1}]*(a + b*x^n)^p)/c^j, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rule 1248

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1274

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f*x)^(m + 1)*(a
+ c*x^4)^p*(c*d*(m + 4*p + 3) + c*e*(4*p + m + 1)*x^2))/(c*f*(4*p + m + 1)*(m + 4*p + 3)), x] + Dist[(4*a*p)/(
(4*p + m + 1)*(m + 4*p + 3)), Int[(f*x)^m*(a + c*x^4)^(p - 1)*Simp[d*(m + 4*p + 3) + e*(4*p + m + 1)*x^2, x],
x], x] /; FreeQ[{a, c, d, e, f, m}, x] && GtQ[p, 0] && NeQ[4*p + m + 1, 0] && NeQ[m + 4*p + 3, 0] && IntegerQ[
2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1280

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e*f*(f*x)^(m - 1)*
(a + c*x^4)^(p + 1))/(c*(m + 4*p + 3)), x] - Dist[f^2/(c*(m + 4*p + 3)), Int[(f*x)^(m - 2)*(a + c*x^4)^p*(a*e*
(m - 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] &
& IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int x \left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4} \, dx &=\int \left (x \left (c+e x^2\right ) \sqrt{a+b x^4}+x^2 \left (d+f x^2\right ) \sqrt{a+b x^4}\right ) \, dx\\ &=\int x \left (c+e x^2\right ) \sqrt{a+b x^4} \, dx+\int x^2 \left (d+f x^2\right ) \sqrt{a+b x^4} \, dx\\ &=\frac{1}{35} x^3 \left (7 d+5 f x^2\right ) \sqrt{a+b x^4}+\frac{1}{2} \operatorname{Subst}\left (\int (c+e x) \sqrt{a+b x^2} \, dx,x,x^2\right )+\frac{1}{35} (2 a) \int \frac{x^2 \left (7 d+5 f x^2\right )}{\sqrt{a+b x^4}} \, dx\\ &=\frac{2 a f x \sqrt{a+b x^4}}{21 b}+\frac{1}{35} x^3 \left (7 d+5 f x^2\right ) \sqrt{a+b x^4}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}-\frac{(2 a) \int \frac{5 a f-21 b d x^2}{\sqrt{a+b x^4}} \, dx}{105 b}+\frac{1}{2} c \operatorname{Subst}\left (\int \sqrt{a+b x^2} \, dx,x,x^2\right )\\ &=\frac{2 a f x \sqrt{a+b x^4}}{21 b}+\frac{1}{4} c x^2 \sqrt{a+b x^4}+\frac{1}{35} x^3 \left (7 d+5 f x^2\right ) \sqrt{a+b x^4}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}+\frac{1}{4} (a c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,x^2\right )-\frac{\left (2 a^{3/2} d\right ) \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{5 \sqrt{b}}+\frac{\left (2 a^{3/2} \left (21 \sqrt{b} d-5 \sqrt{a} f\right )\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx}{105 b}\\ &=\frac{2 a f x \sqrt{a+b x^4}}{21 b}+\frac{1}{4} c x^2 \sqrt{a+b x^4}+\frac{2 a d x \sqrt{a+b x^4}}{5 \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{1}{35} x^3 \left (7 d+5 f x^2\right ) \sqrt{a+b x^4}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}-\frac{2 a^{5/4} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a+b x^4}}+\frac{a^{5/4} \left (21 \sqrt{b} d-5 \sqrt{a} f\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 b^{5/4} \sqrt{a+b x^4}}+\frac{1}{4} (a c) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x^2}{\sqrt{a+b x^4}}\right )\\ &=\frac{2 a f x \sqrt{a+b x^4}}{21 b}+\frac{1}{4} c x^2 \sqrt{a+b x^4}+\frac{2 a d x \sqrt{a+b x^4}}{5 \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{1}{35} x^3 \left (7 d+5 f x^2\right ) \sqrt{a+b x^4}+\frac{e \left (a+b x^4\right )^{3/2}}{6 b}+\frac{a c \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 \sqrt{b}}-\frac{2 a^{5/4} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a+b x^4}}+\frac{a^{5/4} \left (21 \sqrt{b} d-5 \sqrt{a} f\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 b^{5/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.184122, size = 211, normalized size = 0.6 \[ \frac{\sqrt{a+b x^4} \left (21 b c x^2 \sqrt{\frac{b x^4}{a}+1}+21 \sqrt{a} \sqrt{b} c \sinh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )+28 b d x^3 \, _2F_1\left (-\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{b x^4}{a}\right )+14 b e x^4 \sqrt{\frac{b x^4}{a}+1}+14 a e \sqrt{\frac{b x^4}{a}+1}-12 a f x \, _2F_1\left (-\frac{1}{2},\frac{1}{4};\frac{5}{4};-\frac{b x^4}{a}\right )+12 b f x^5 \sqrt{\frac{b x^4}{a}+1}+12 a f x \sqrt{\frac{b x^4}{a}+1}\right )}{84 b \sqrt{\frac{b x^4}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(Sqrt[a + b*x^4]*(14*a*e*Sqrt[1 + (b*x^4)/a] + 12*a*f*x*Sqrt[1 + (b*x^4)/a] + 21*b*c*x^2*Sqrt[1 + (b*x^4)/a] +
 14*b*e*x^4*Sqrt[1 + (b*x^4)/a] + 12*b*f*x^5*Sqrt[1 + (b*x^4)/a] + 21*Sqrt[a]*Sqrt[b]*c*ArcSinh[(Sqrt[b]*x^2)/
Sqrt[a]] - 12*a*f*x*Hypergeometric2F1[-1/2, 1/4, 5/4, -((b*x^4)/a)] + 28*b*d*x^3*Hypergeometric2F1[-1/2, 3/4,
7/4, -((b*x^4)/a)]))/(84*b*Sqrt[1 + (b*x^4)/a])

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 337, normalized size = 1. \begin{align*}{\frac{f{x}^{5}}{7}\sqrt{b{x}^{4}+a}}+{\frac{2\,afx}{21\,b}\sqrt{b{x}^{4}+a}}-{\frac{2\,f{a}^{2}}{21\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{e}{6\,b} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}+{\frac{d{x}^{3}}{5}\sqrt{b{x}^{4}+a}}+{{\frac{2\,i}{5}}d{a}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}-{{\frac{2\,i}{5}}d{a}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}+{\frac{c{x}^{2}}{4}\sqrt{b{x}^{4}+a}}+{\frac{ac}{4}\ln \left ({x}^{2}\sqrt{b}+\sqrt{b{x}^{4}+a} \right ){\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x)

[Out]

1/7*f*x^5*(b*x^4+a)^(1/2)+2/21*a*f*x*(b*x^4+a)^(1/2)/b-2/21*f/b*a^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(
1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/6*e
*(b*x^4+a)^(3/2)/b+1/5*x^3*d*(b*x^4+a)^(1/2)+2/5*I*d*a^(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^
2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-2/5*
I*d*a^(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a
)^(1/2)/b^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/4*c*x^2*(b*x^4+a)^(1/2)+1/4*c*a/b^(1/2)*ln(x^2*b^(1
/2)+(b*x^4+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b x^{4} + a}{\left (f x^{4} + e x^{3} + d x^{2} + c x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^4 + e*x^3 + d*x^2 + c*x), x)

________________________________________________________________________________________

Sympy [A]  time = 4.28085, size = 158, normalized size = 0.45 \begin{align*} \frac{\sqrt{a} c x^{2} \sqrt{1 + \frac{b x^{4}}{a}}}{4} + \frac{\sqrt{a} d x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{7}{4}\right )} + \frac{\sqrt{a} f x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{9}{4}\right )} + \frac{a c \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{4 \sqrt{b}} + e \left (\begin{cases} \frac{\sqrt{a} x^{4}}{4} & \text{for}\: b = 0 \\\frac{\left (a + b x^{4}\right )^{\frac{3}{2}}}{6 b} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2),x)

[Out]

sqrt(a)*c*x**2*sqrt(1 + b*x**4/a)/4 + sqrt(a)*d*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**4*exp_polar(I*
pi)/a)/(4*gamma(7/4)) + sqrt(a)*f*x**5*gamma(5/4)*hyper((-1/2, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamm
a(9/4)) + a*c*asinh(sqrt(b)*x**2/sqrt(a))/(4*sqrt(b)) + e*Piecewise((sqrt(a)*x**4/4, Eq(b, 0)), ((a + b*x**4)*
*(3/2)/(6*b), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )} x\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x, x)